
Matheus Kerber Venturelli

Fast and Accurate Simulation of Deformable
Solid Dynamics on Coarse Meshes

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Informática, do Departamento de Informática da PUC-Rio in
partial fulfillment of the requirements for the degree of Mestre
em Informática.

Advisor: Prof. Waldemar Celes Filho

Rio de Janeiro
March 2024

Matheus Kerber Venturelli

Fast and Accurate Simulation of Deformable
Solid Dynamics on Coarse Meshes

Dissertation presented to the Programa de Pós–graduação em
Informática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informática. Approved by the
Examination Committee:

Prof. Waldemar Celes Filho
Advisor

Departamento de Informática – PUC-Rio

Prof. Ivan Fábio Mota de Menezes
Departamento de Engenharia Mecânica – PUC-Rio

Prof. José Alberto Rodrigues Pereira Sardinha
Departamento de Informática – PUC-Rio

Rio de Janeiro, March 15th, 2024

All rights reserved.

Matheus Kerber Venturelli

Graduated in Computer Engineering from the Pontifical
Catholic University of Rio de Janeiro (PUC-Rio). Works at
the Tecgraf Institute of PUC-Rio developing software for sim-
ulating the physics of oil reservoirs.

Bibliographic data
Kerber Venturelli, Matheus

Fast and Accurate Simulation of Deformable Solid Dy-
namics on Coarse Meshes / Matheus Kerber Venturelli; advi-
sor: Waldemar Celes Filho. – 2024.

54 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Informática, 2024.

Inclui bibliografia

1. Computer Science – Teses. 2. Elementos Finitos. 3.
Simulação Numérica. 4. Simulação Baseada em Dados. 5.
Aprendizado Profundo. 6. Redes Neurais de Grafo. 7.
Dinâmica de Sólidos Deformáveis. 8. Modelo Aproximado.
I. Celes Filho, Waldemar. II. Pontifícia Universidade Católica
do Rio de Janeiro. Departamento de Informática. III. Título.

CDD: 004

To my parents, friends, and family
for always trusting and motivating me.

Acknowledgments

To CAPES, CNPq, PUC-Rio, and the Tecgraf Institute, for the funds and
grants provided, without which this work could not have been carried out.

I thank my colleagues at the Tecgraf Institute for their support, help, and
believing in my ability. To Professor Waldemar Celes, my advisor, for guiding
and supporting me on this journey. To Jônatas Wehrmann, for his teachings at
the beginning of my master’s course. To Professor Marco Molinaro, for always
supporting and guiding me throughout my academic career. To Professors Ivan
Menezes and Paulo Ivson for giving me important advice during my research.

I also thank my parents, family, friends, and girlfriend, Vitória Velloso, for
always supporting, motivating, and believing in me during the most difficult
moments.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

Abstract

Kerber Venturelli, Matheus; Celes Filho, Waldemar (Advisor). Fast
and Accurate Simulation of Deformable Solid Dynamics on
Coarse Meshes. Rio de Janeiro, 2024. 54p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

This thesis introduces a novel hybrid simulator that combines a numerical
Finite Element (FE) Partial Differential Equation solver with a Message
Passing Neural Network (MPNN) to perform simulations of deformable solid
dynamics on coarse meshes. Our work aims to provide accurate simulations
with an error comparable to that obtained with more refined meshes in FE
discretizations while maintaining computational efficiency by using an MPNN
component that corrects the numerical errors associated with using a coarse
mesh. We evaluate our model focusing on accuracy, generalization capacity,
and computational speed compared to a reference numerical solver that uses
64 times more refined meshes. We introduce a new dataset for this comparison,
encompassing three numerical benchmark cases: (i) free deformation after an
initial impulse, (ii) stretching, and (iii) torsion of deformable solids. Based on
simulation results, the study thoroughly discusses our method’s strengths and
weaknesses. The study shows that our method corrects an average of 95.4% of
the numerical error associated with discretization while being up to 88 times
faster than the reference solver. On top of that, our model is fully differentiable
in relation to loss functions and can be embedded into a neural network layer,
allowing it to be easily extended by future work. Data and code are made
available on <https://github.com/Kerber31/fast_coarse_FEM> for further
investigations.

Keywords
Finite Elements; Numerical Simulation; Data-driven Simulation; Deep

Learning; Graph Neural Networks; Deformable Solid Dynamics; Surrogate
Model.

https://github.com/Kerber31/fast_coarse_FEM

Resumo

Kerber Venturelli, Matheus; Celes Filho, Waldemar. Simulação Rápida
e Precisa de Dinâmica de Sólidos Deformáveis em Malhas
Pouco Refinadas. Rio de Janeiro, 2024. 54p. Dissertação de Mestrado
– Departamento de Informática, Pontifícia Universidade Católica do Rio
de Janeiro.

Esta dissertação introduz um simulador híbrido inovador que combina um
resolvedor de Equações Diferenciais Parciais (EDP) numérico de Elementos
Finitos (FE) com uma Rede Neural de Passagem de Mensagens (MPNN)
para realizar simulações de dinâmicas de sólidos deformáveis em malhas
pouco refinadas. Nosso trabalho visa fornecer simulações precisas com um
erro comparável ao obtido com malhas mais refinadas em discretizações FE,
mantendo a eficiência computacional ao usar um componente MPNN que
corrige os erros numéricos associados ao uso de uma malha menos refinada.
Avaliamos nosso modelo focando na precisão, capacidade de generalização e
velocidade computacional em comparação com um solucionador numérico de
referência que usa malhas 64 vezes mais refinadas. Introduzimos um novo
conjunto de dados para essa comparação, abrangendo três casos de referência
numéricos: (i) deformação livre após um impulso inicial, (ii) alongamento e (iii)
torção de sólidos deformáveis. Baseado nos resultados de simulação, o estudo
discute as forças e fraquezas do nosso método. O estudo mostra que nosso
método corrige em média 95,4% do erro numérico associado à discretização,
sendo até 88 vezes mais rápido que o solucionador de referência. Além disso,
nosso modelo é totalmente diferenciável em relaçao a funções de custo e pode
ser incorporado em uma camada de rede neural, permitindo que seja facilmente
estendido por trabalhos futuros. Dados e código estão disponíveis em <https:
//github.com/Kerber31/fast_coarse_FEM> para investigações futuras.

Palavras-chave
Elementos Finitos; Simulação Numérica; Simulação Baseada em Da-

dos; Aprendizado Profundo; Redes Neurais de Grafo; Dinâmica de Sólidos
Deformáveis; Modelo Aproximado.

https://github.com/Kerber31/fast_coarse_FEM
https://github.com/Kerber31/fast_coarse_FEM

Table of contents

1 Introduction 15

2 Related Work 17

3 Numerical Simulation Background 19
3.1 Forward Projective Dynamics 19
3.2 Backward Projective Dynamics 21

4 Deep Learning Background 24
4.1 Fully Connected Neural Network 24
4.2 Message Passing Neural Network 25
4.3 Numerical Challenges in Message Passing Neural Networks 26
4.4 MeshGraphNet 29

5 Methodology 31
5.1 Formulation 31
5.2 Implementation Details 32

6 Dataset 34

7 Results and Discussion 38

8 Conclusion 47

9 Bibliography 48

List of figures

Figure 4.1 Architecture of a Fully Connected Neural Network (FCNN):
This diagram illustrates a FCNN, composed of three key layers: the Input
Layer (I1, I2, . . .), where each neuron represents an input feature; the Hidden
Layer (H1, H2, . . .), which processes inputs via weighted connections to learn
complex patterns; and the Output Layer (O1, O2, . . .), that outputs the
network’s final decision. Arrows signify synaptic weights between neurons. 24
Figure 4.2 Visual representation of the message passing operation in
an MPNN layer. Each node ni propagates its features, aggregated with the
features of the edge e that connects them, to its neighbor nodes nj. 25
Figure 4.3 Visual representation of a MeshGraphNet. The input
features are fed to the Encoder FCNN, which transforms them into the latent
features subsequently fed to the Processor network. Then, the processor
network applies a series of message-passing steps to obtain the latent features
that are fed to the Decoder FCNN. Then, the Decoder transforms the latent
features into the output features. 30

Figure 6.1 CrossMeshes are composed of a central beam with either
two or four symmetric perpendicular ramifications centered at a random
position on the central beam. The refined meshes’ number of nodes varies
from 7857 to 18225 nodes, while the coarse counterparts vary from 225 to
513. 34
Figure 6.2 WeightMeshes are composed of one or two perpendicular
support beams and another pendular beam with an inflation in the middle,
which we refer to as the weight. To add more variation to the data, we move
the pendular beam together with one of the support beams over the other
support beam. We also move the weight over the pendular beam and vary
the sizes of all beams. The refined meshes’ number of nodes varies from
8433 to 16857 nodes, while the coarse counterparts vary from 237 to 471. 35
Figure 6.3 Visual representation of the data in the Impulse (left),
Stretch (middle), and Torsion (right) datasets. The blue arrows represent
forces, while the transparent planes are boundary conditions, and the red
sphere is the node used as reference in the analysis presented in Chapter 7. 35

Figure 7.1 Trajectory-wise training losses for the Impulse, Stretch, and
Torsion datasets. 39
Figure 7.2 Comparison of node trajectories resulting from the application
of all simulators in the first trajectory of the Impulse validation dataset. 41
Figure 7.3 Comparison of node trajectories resulting from the application
of all simulators in the first trajectory of the Stretch validation dataset. 42
Figure 7.4 Comparison of node trajectories resulting from the application
of all simulators in the first trajectory of the Torsion validation dataset. 43
Figure 7.5 Comparison of the same frame from the first trajectory of
the Impulse validation dataset, generated by our model (green), SR(x, ∆t)
(blue), and SU(x, ∆t) (red). 44

Figure 7.6 Comparison of the same frame from the second trajectory of
the Stretch validation dataset, generated by our model (green), SR(x, ∆t)
(blue), and SU(x, ∆t) (red). 44
Figure 7.7 Comparison of the same frame from the fifth trajectory of
the Torsion validation dataset, generated by our model (green), SR(x, ∆t)
(blue), and SU(x, ∆t) (red). 45

List of tables

Table 7.1 Accuracy and computational speed comparison across different
datasets. In the table Speedup = tR

tM
, where tR is the total time SR(x, ∆t)

took to perform the simulations of the validation dataset, and tM is
the time the method M took to perform the same task. Our method
substantially improves accuracy when compared to the baselines and speed
when compared to the Intermediate and Reference simulators, demonstrating
its potential for efficient and precise simulations. 45

List of algorithms

Algorithm 1 Torsion Dataset Generation Procedure 37
Algorithm 2 Impulse and Stretch Datasets Generation Procedure 37

List of Abreviations

PDE – Partial Differential Equation

FEM – Finite Element Method

FE – Finite Element

CFD – Computational Fluid Dynamics

LES – Large Eddy Simulation

PD – Projective Dynamics

DiffPD – Differentiable Projective Dynamics

ANN – Artificial Neural Network

FCNN – Fully Connected Neural Network

DNN – Dense Neural Network

CNN – Convolutional Neural Network

GNN – Graph Neural Network

GCNN – Graph Convolutional Neural Network

MPNN – Message Passing Neural Network

The most beautiful experience we can have is
the mysterious. It is the fundamental

emotion that stands at the cradle of true art
and true science.

Albert Einstein, The World As I See It.

1
Introduction

In the realm of physics and engineering, challenges are often modeled
through partial differential equations (PDEs), such as the Elastodynamic
equation (GONZALEZ; STUART, 2008), or the Navier–Stokes equations
(ANDERSON, 2009). Typically, analytical solutions to these PDEs are not
possible, thus requiring computational approximation methods. The accuracy
of these methods is highly dependent on the quality of the discretization of
the domain. Therefore, as coarser discretizations tend to be less accurate, the
computational cost for tight error tolerances can be exceedingly high. This
motivates the creation of surrogate models capable of delivering faster solutions
with reasonable accuracy.

Previous work has shown that Artificial Neural Networks (ANN) are
universal approximators (HORNIK; STINCHCOMBE; WHITE, 1989; CY-
BENKO, 1989); therefore, extensive research has been made into approxi-
mating the solution of PDEs using ANNs (URIARTE; PARDO; OMELLA,
2022; MA et al., 2023; ZHANG; CAI; ZHANG, 2023; BERG; NYSTRöM,
2018; SIRIGNANO; SPILIOPOULOS, 2018), which are also known as data-
driven PDE solvers. Two main approaches regarding applying ANNs to the
solution of PDEs can be found across multiple disciplines of physics. The
first one is purely data-driven (FORTUNATO et al., 2022; CAO et al., 2023),
and the other is the integration of data-driven methods into the pipeline of
a numerical method to create hybrid solvers (MCGREIVY; HAKIM, 2023;
PESTOURIE et al., 2023; KOCHKOV et al., 2021; SIRIGNANO; MACART;
FREUND, 2020; GONZáLEZ; CHINESTA; CUETO, 2019). Neural Network
models present the advantage of being highly parallelizable on GPUs (PASZKE
et al., 2019; ABADI et al., 2015), and they can learn to represent nonlinear
functions (SHEN et al., 2021).

Further work has been done to create learning representations suitable
to different types of data. Convolutional Neural Networks (CNNs) (LECUN
et al., 1998) were made to learn functions over structured data, like images
(RONNEBERGER; FISCHER; BROX, 2015; REDMON et al., 2016). On
the other hand, Graph Convolutional Neural Networks (GCNNs) (KIPF;
WELLING, 2017) and Message Passing Neural Networks (MPNN) (GILMER
et al., 2017) were developed to learn functions over unstructured graph data,
such as geometrical data (MILANO et al., 2020; SHAKIBAJAHROMI; KIM;
BREEN, 2024; LIU; NICKEL; KIELA, 2019).

Chapter 1. Introduction 16

We build upon these works by combining the generalization capacity of
MPNNs with a differentiable simulator to create a fully differentiable method
that can be embedded into a neural network layer. Our contributions can be
summarized as follows:

1. A hybrid method that is reusable on meshes and parameters outside
those used in training, and combines graph networks’ learning and
generalization capabilities with the fast forward and backward times
of Differentiable Projective Dynamics (DiffPD) (DU et al., 2021), an
approximated numerical solver that uses a surrogate energy function,
described in Section 3.1, to approximate the system nonlinearities.;

2. A method capable of performing different kinds of simulations on de-
formable solid dynamics while correcting an average of 95.4% of the
numerical error associated with discretization and being up to 88 times
faster when compared to an instance of DiffPD using meshes 64 times
more refined;

3. A fully differentiable model that can be embedded into a neural network
layer, allowing it to be easily extended by future work;

4. New datasets to train and evaluate data-oriented simulators on coarse
mesh deformable solid dynamics;

5. Open Source data and code available on <https://github.com/
Kerber31/fast_coarse_FEM>;

https://github.com/Kerber31/fast_coarse_FEM
https://github.com/Kerber31/fast_coarse_FEM

2
Related Work

CNNs are extensively used in Computational Fluid Dynamics (CFD) as
a way to learn functions over regular grids (ZHANG et al., 2023; WANG;
CHANG; ZHANG, 2022; GUAN et al., 2022; TIAN et al., 2020; XU; DU-
RAISAMY, 2020). One important example of their use is in coarse physics sim-
ulation, on applications such as Large Eddy Simulations (LES) (KOCHKOV
et al., 2021), and simulation of turbulent flows at high Reynolds number
(PATHAK et al., 2020). Between those methods, Solver-in-the-Loop (UM et
al., 2020) stands out for showing the advantages of including a differentiable
simulator in the training loop and analyzing the benefit of including physical
gradients in the backpropagation process. Further work has also shown that
this coupling creates more accurate resulting simulations than a purely data-
oriented simulator (ILLARRAMENDI; BAUERHEIM; CUENOT, 2022) over
simulations in CFD.

In solid mechanics, applications tend to avoid CNNs since they restrict
the usage of the model to structured data, such as grids or meshes with regular
spacing, and even on these meshes, if they are not rectangular shaped, the
network needs to receive empty spaces as inputs. This implies the network
needs to have a much bigger input size than necessary, making the model
very memory and time inefficient, as bigger inputs require more network
parameters to store data and feature maps. Also, convolution and pooling
operations become more expensive with input size. Therefore, many works
use Fully Connected Neural Networks (FCNNs), which can be modeled to
learn functions on irregular structures. However, this kind of network cannot
process varying numbers of input and output parameters, so works that use
them normally train the networks by sampling points on the domain and giving
their coordinates as inputs to the network. The training employs one network
for each geometry, varying only initial conditions and material parameters on
each training sample (DIAO et al., 2023; HU et al., 2024; NING et al., 2023;
REZAEI et al., 2022).

Fewer works exist in coarse-graining of deformable solid dynamics, such
as (ARORA, 2022), where authors have created an upscaling method based
on previous techniques in image supersampling that upscales coarse-grained
simulation frames using CNNs. In (HAN et al., 2021), the authors describe a
method to train coarse sampled FCNNs to create real-time flexible multibody
dynamics simulations. Other work has made a hybrid method to correct a

Chapter 2. Related Work 18

coarse deformable beam coupled with fluid flow by training one FCNN for
every node of the coarse mesh (BAIGES et al., 2020). However, training one
FCNN for every node makes them unusable in other meshes, as they become
biased towards the node they were trained on. Therefore, these works can be
extended by using GNNs to overcome the limitations of using FCNNs and
CNNs on unstructured data.

By representing the meshes as graphs where graph vertices and edges
represent mesh nodes and edges, previous works have shown the capability
of GNNs in learning to simulate soft tissue mechanics while generalizing
to new geometries (DALTON; HUSMEIER; GAO, 2023; DALTON; GAO;
HUSMEIER, 2022). Other successful cases are using these models to solve
PDE-governed forward and inverse problems (GAO; ZAHR; WANG, 2022)
and predicting dynamic responses of continuous deformable bodies (CHEN
et al., 2024). A method that stands out among GNN-based simulators is
MeshGraphNet (PFAFF et al., 2021), a network architecture capable of
learning to simulate diverse physical phenomena, including cloth, solids, and
fluids, with remarkable accuracy and generalization regarding geometry and
initial conditions. Therefore, we choose this model as a base of comparison.
Further works have been done in creating multiscale and multi-fidelity methods
(FORTUNATO et al., 2022; CAO et al., 2023; BLACK; NAJAFI, 2022) that
have better generalization capability and can learn coarse physics simulation
as a subproblem in their architecture. We propose extending a numerical
simulator with an MPNN architecture similar to MeshGraphNet to create
a fast and accurate coarse simulator reusable in other meshes.

Regarding numerical simulators, recently, extensive work has been done
on differentiable simulators to be used in the solution of inverse physical prob-
lems and training of control neural networks for soft robots (HU et al., 2019;
HUANG et al., 2021; BELBUTE-PERES et al., 2018; HAHN et al., 2019).
These solvers must be fast because the processes of finding optimal parameters
on inverse problems and training control neural networks are gradient-based
nonlinear optimization processes that require running simulations multiple
times. Therefore, a differentiable version of Projective Dynamics (BOUAZIZ
et al., 2014), namely Differentiable Projective Dynamics (DiffPD) (DU et al.,
2021), has been created as a way to perform fast differentiable simulations by
taking advantage of the efficient local-global optimization process of Projective
Dynamics, which became a state-of-the-art method for these tasks (MA et al.,
2021; QIAO et al., 2021).

3
Numerical Simulation Background

In this chapter, we review the formulation for forward PD defined by
(BOUAZIZ et al., 2014; LIU; BOUAZIZ; KAVAN, 2017) and backward PD
defined by (DU et al., 2021) that compose DiffPD. This formulation is later
used to compose our hybrid method in Section 5.2.

3.1
Forward Projective Dynamics

Let pi ∈ R3 be the position and vi ∈ R3 be the velocity of the n 3D
nodes in a FEM discretization of a deformable solid at the i-th time step. (DU
et al., 2021; BOUAZIZ et al., 2014; LIU; BOUAZIZ; KAVAN, 2017) show that
we can define an implicit integration scheme:

pi+1 = pi + hvi+1, (3-1)

vi+1 = vi + hM−1[fint(pi+1) + fext], (3-2)
where M ∈ R3nx3n is a mass matrix, fext and fint are the sum of external and
internal forces, and h is the time step size. By substituting Eq. (3-2) in Eq.
(3-1), we obtain the following nonlinear system of equations (DU et al., 2021;
BOUAZIZ et al., 2014):

qi = pi + hvi + h2M−1fext, (3-3)

1
h2 M(pi+1 − qi)− fint(pi+1) = 0. (3-4)

This system can be used to find p, with a given q, at each time step. We
can convert the system to an optimization problem (BOUAZIZ et al., 2014;
STUART; HUMPHRIES, 1996; DU et al., 2021):

min
pi+1

γ(pi+1), (3-5)

γ(pi+1) = 1
2h2 (pi+1 − qi)⊤M(pi+1 − qi) + W (pi+1), (3-6)

fint = −∇W, (3-7)
where W is the potential energy associated with the internal force. Setting
the gradient of the optimization in Eq. (3-5) to zero leads to the system of
equations in Eqs. (3-3) and (3-4), as ∇γ(p) is the left side of Eq. (3-4):

Chapter 3. Numerical Simulation Background 20

∇γ(pi+1) = ∇[1
2h2 (pi+1 − qi)⊤M(pi+1 − qi)] +∇W (pi+1) (3-8)

∇γ(pi+1) = 1
h2 M(pi+1 − qi)− fint(pi+1). (3-9)

Typically, the minimization in Eq. (3-5) is done using Newton’s Method,
which requires solving a linear system of equations for each step, as the Hessian
changes every iteration, thus making the process computationally expensive.
To simplify the notation on further formulation, we will drop the subscripts in
pi+1 and qi.

The key aspect of PD that accelerates this process is the use of a sum
of quadratic functions to define the potential energy W that decouples the
nonlinearity in material models (BOUAZIZ et al., 2014):

W̃k(p, ck) = ωk

2 ∥Qkp− ck∥2
2, (3-10)

Wk = min
ck∈Mk

W̃k(p, ck), (3-11)

W (p) =
∑

k

Wk(p), (3-12)

where k is the node number. In this system, Wk projects a linear transformation
of p, Qkp, into its closest point ck in the constraint manifold Mk, and scales
the squared distance ∥Qkp− ck∥2

2 by a stiffness ωk.
With this definition, PD proposes a surrogate objective function, solved

by a local-global optimization process:

γ̃(p, c) = 1
2h2 (p− q)⊤M(p− q) +

∑
k

W̃k(p, ck), (3-13)

where c stacks up all ck from each Wk. In the local step, PD fixes the current p,
then projects Qkp onto the constraint manifold Mk to obtain ck in each Wk.
This can be massively parallelized for all Wk. The global step, γ̃ is minimized
over p with c fixed, which is a quadratic function and can be solved analytically
by the system of equations originated by ∇γ̃ = 0:

(1
h2 M +

∑
k

ωkQ⊤
k Qk)︸ ︷︷ ︸

G

p = 1
h2 Mq +

∑
k

ωkQ⊤
k ck. (3-14)

This local-global optimization process ensures that γ̃ decreases mono-
tonically. Also, it can be shown that ∇pγ̃ = ∇γ upon convergence (LIU;
BOUAZIZ; KAVAN, 2017) and, as γ̃ is lower bound by 0, the method is guar-
anteed to converge to a local minimum of γ̃, where the saddle point condition
∇γ̃ = 0 is satisfied.

Chapter 3. Numerical Simulation Background 21

What guarantees efficiency in forward PD is that the matrix G in the
global step is symmetric positive definite and constant, thus being prefactor-
izable at the beginning of the simulation, which leads the forward simulation
to only require back-substitution.

3.2
Backward Projective Dynamics

For backpropagation, (DU et al., 2021) demonstrates that we need to
obtain the gradient of a loss function L(p) in relation to p and q, ∂L

∂p and
∂L
∂q . Then, it is possible to backpropagate through multiple time steps by
backpropagating through every (p, q) pair for all time steps.

We need to obtain ∂L
∂q . For that, the chain rule can be used:

∂L

∂q
= ∂L

∂p
∂p
∂q

, (3-15)

as for ∂p
∂q , we can obtain it using the fact that p and q are implicitly constrained

by ∇γ(p) = 0, and differentiate with respect to q to obtain the following
equation (DU et al., 2021):

∂∇γ(p)
∂p

∂p
∂q

+ ∂∇γ(p)
∂q

= 0, (3-16)

∂

∂p

[
1
h2 M(p− q) +∇W (p)

]
∂p
∂q

+ ∂

∂q

[
1
h2 M(p− q) +∇W (p

]
= 0, (3-17)

[
1
h2 M +∇2W (p)

]
∂p
∂q
− 1

h2 M = 0, (3-18)

∇2γ(p)∂p
∂q
− 1

h2 M = 0, (3-19)

∂p
∂q

= 1
h2 [∇2γ(p)]−1M. (3-20)

Now, we can combine Eqs. (3-15) and (3-20) to find ∂L
∂q :

∂L

∂q
= ∂L

∂p
∂p
∂q

= 1
h2

∂L

∂p
[∇2γ(p)]−1M. (3-21)

As computing the inverse of ∇2γ(p) is expensive, (DU et al., 2021)
separates this equation into the system:

∂L

∂q
= M

h2 x⊤, (3-22)

∇2γ(p)x =
(

∂L

∂p

)⊤

, (3-23)

where ∇2γ(p) is symmetric, therefore, we drop its transpose. Implementing
Eq. (3-23) is computationally expensive, because ∇2γ(p) is recalculated and
refactorized at all time steps. Therefore, (DU et al., 2021) proposes a PD-based

Chapter 3. Numerical Simulation Background 22

backpropagation method by decoupling ∇2γ(p) into a parallelizable nonlinear
component and a constant global matrix. The first step for that is to write the
equation for ∇2γ(p):

∇2γ(p) = 1
h2 M +∇2W (p), (3-24)

now, we need to write the equation for ∇2W (p):

∇W (p) =
∑

k

ωk(Qk −
∂ck

∂p
)⊤(Qkp− ck) =⇒

∑
k

ωkQ⊤
k (Qkp− ck), (3-25)

∇2W (p) =
∑

k

ωkQ⊤
k Qk −

∑
k

ωkQ⊤
k

∂ck

∂p
. (3-26)

In Eq. (3-25), ∂ck

∂p can be ignored according to the envelope theorem (LIU;
BOUAZIZ; KAVAN, 2017). With this definition, we can substitute Eq. (3-26)
into Eq. (3-24):

∇2γ(p) = 1
h2 M +

∑
k

ωkQ⊤
k Qk︸ ︷︷ ︸

G

−
∑

k

ωkQ⊤
k

∂ck

∂p
, (3-27)

H =
∑

k

ωkQ⊤
k

∂ck

∂p
, (3-28)

∇2γ(p) = G−H, (3-29)
where G is the matrix defined in Eq. (3-14). An iterative process can be defined
to calculate the auxiliary vector x in Eq. (3-23) by using ∇2γ(p) = G−H:

Gxj+1 = Hxj +
(

∂L

∂p

)⊤

, (3-30)

where j is the iteration number. To solve this system, a local-global solve
is used, where the local solve computes Hxj across all Wk, then the global
step solves xj+1 by performing back-substitution in G. Since G was used in
forward simulation, its Cholesky factorization was already calculated and can
be reused. (DU et al., 2021) shows that this iterative algorithm converges for
any initial guess x0 if and only if the spectral radius of G−1H is smaller than
1, and the authors leave a general proof of whether this is true for all forms of
Wk to future work, but argue that convergence issues were never seen in their
experiments, which indicates that this condition is likely satisfied.

Other then the PD-like local-global solve, (DU et al., 2021) demonstrates
that it is possible to apply a similar numerical optimization technique to
the quasi-Newton method in (LIU; BOUAZIZ; KAVAN, 2017) by using the
following objective function:

r(x) = 1
2x⊤∇2γ(p)x− ∂L

∂p
x, (3-31)

Chapter 3. Numerical Simulation Background 23

where∇r(x) = 0 is Eq. (3-23) and both∇2γ(p) and ∂L
p were already calculated

in forward simulation.
The Newton’s Method update rule for this critical-point problem can be

summarized as:

∇r(x) = 0, (3-32)

∇r(x) = ∇r(xj + ∆x) ≈ ∇r(xj) +∇2r(xj)∆x, (3-33)

∇2r(xj)∆x ≈ −∇r(xj), (3-34)

∆x = −[∇2r(xj)]−1∇r(xj), (3-35)
where the update at each iteration is defined by xj+1 = xj + ∆x, and
∇2r(x) = ∇2γ(p) = G − H. If the hessian ∇2r(x) is approximated using
G, then the following quasi-Newton update rule is derived:

xj+1 = xj −G−1∇r(x) (3-36)

xj+1 = xj −G−1

(G−H)xj −
(

∂L

∂p

)⊤
 (3-37)

xj+1 = G−1Hxj + G−1
(

∂L

∂p

)⊤

, (3-38)

that matches the iteration process described in Eq. (3-30). Consequently, the
local-global solver introduced by (DU et al., 2021) can be understood as
employing a basic quasi-Newton approach, utilizing a fixed Hessian estimate
denoted by G.

4
Deep Learning Background

4.1
Fully Connected Neural Network

... ...
...

I1

I2

In−1

In

H1

H2

Hm

O1

Ok

Input
Layer

Hidden
Layer

Ouput
Layer

Figure 4.1: Architecture of a Fully Connected Neural Network (FCNN): This
diagram illustrates a FCNN, composed of three key layers: the Input Layer
(I1, I2, . . .), where each neuron represents an input feature; the Hidden Layer
(H1, H2, . . .), which processes inputs via weighted connections to learn complex
patterns; and the Output Layer (O1, O2, . . .), that outputs the network’s final
decision. Arrows signify synaptic weights between neurons.

Fully connected neural networks (FCNNs), or dense neural networks
(DNNs), are characterized by their layered architecture, where each neuron
in a layer is connected to all neurons in the subsequent layer (Figure 4.1).
The network comprises L layers, with each layer l containing Nl neurons.
The output of each neuron is the weighted sum of its inputs and a bias term
transformed by a nonlinear activation function. The weights and biases for
each layer l are represented by a weight matrix Θl of dimensions Nl × Nl−1

and a bias vector bl of dimension Nl. The following equation defines forward
propagation in the network:

a[l] = f(Θla[l−1] + bl), (4-1)
where a[l−1] is the activation from the previous layer and f is the activation
function.

Chapter 4. Deep Learning Background 25

This framework enables the network to learn complex mappings from
inputs to outputs, contingent upon the choice of activation functions, loss
functions, and optimization algorithms used during the training process.

4.2
Message Passing Neural Network

In message-passing networks, each node ni in the graph holds a feature
vector hi. The core idea is to iteratively update the state of each node by
aggregating and transforming the feature vectors of its neighboring nodes.
The update at each iteration k can be mathematically described as follows:

hk+1
i = f

hk
i ,

⊕
nj∈N(ni)

g(hk
i , hk

j , eij)
 , (4-2)

where N(ni) denotes the set of neighbors of node ni, eij represents the edge
features between nodes ni and nj,

⊕ is an aggregation function (such as
sum, mean, or max), and f and g are learnable transformation functions,
implemented as FCNNs. This process is depicted in Figure 4.2.

n0

n1

n2

e2

e1

e3

n3

Figure 4.2: Visual representation of the message passing operation in an MPNN
layer. Each node ni propagates its features, aggregated with the features of the
edge e that connects them, to its neighbor nodes nj.

The network typically operates in two phases: the message-passing phase,
where nodes exchange information, and the readout phase, where the updated
node features are aggregated to form the final output of the network. Depend-

Chapter 4. Deep Learning Background 26

ing on the specific task, this output could be node-level predictions, edge-level
predictions, or a graph-level representation.

4.3
Numerical Challenges in Message Passing Neural Networks

Despite the efficacy of Message Passing Neural Networks (MPNNs) in
learning graph-structured data, several numerical challenges can impede their
performance and stability. We discuss these challenges with respect to the
notation used for describing MPNNs in our framework.

4.3.1
Vanishing and Exploding Gradients

One of the primary numerical challenges in deep MPNNs, namely the
vanishing and exploding gradients (BENGIO; SIMARD; FRASCONI, 1994;
LUKOVNIKOV; LEHMANN; FISCHER, 2020), can be attributed to the char-
acteristics of the activation functions used within the FCNNs that implement
the learnable transformation functions f and g. These issues impact the net-
work’s learning capability and stability as follows:

∂L
∂Θ1 =

L∏
l=1

(
∂σ(hl)

∂hl
· ∂hl+1

∂Θl

)
· ∂L

∂hL+1 (4-3)

where ∂L
∂Θ1 represents the gradient of the loss function L with respect to the

weights of the first layer Θ1, σ(hl) denotes the activation function applied
at layer l, and ∂σ(hl)

∂hl represents the derivative of the activation function
with respect to the pre-activation output at layer l. This derivative plays a
crucial role in determining the magnitude of gradients during backpropagation.
Depending on the properties of ∂σ(hl)

∂hl , gradients can either vanish or explode.
To quantify the relationship between the activation function’s derivative and
the gradient magnitude, consider the following proportional relationship:∥∥∥∥∥ ∂L

∂Θ1

∥∥∥∥∥ ∝
L∏

l=1

∣∣∣∣∣∂σ(hl)
∂hl

∣∣∣∣∣ (4-4)

Eq. 4-4 illustrates that the modulus of the gradient of the loss function
with respect to the weights of the first layer is proportional to the product
of the modulus of the derivative of the activation function across all layers.
This relationship highlights how the characteristics of the activation function
influence the phenomena of vanishing and exploding gradients in deep MPNNs.

V anishing Gradients: Activation functions with derivatives that tend to
produce values less than 1 (e.g., sigmoid or tanh in their saturation regions)
can cause the gradients to diminish as they are propagated back through the

Chapter 4. Deep Learning Background 27

layers. This reduces the ability of the network to update its weights effectively,
hindering the learning process:∣∣∣∣∣∂σ(hl)

∂hl

∣∣∣∣∣ < 1 =⇒
∥∥∥∥∥ ∂L

∂Θ1

∥∥∥∥∥→ 0, (4-5)

resulting in the network’s inability to learn complex patterns or improve
performance over iterations.

Exploding Gradients: Conversely, if the activation functions or their
compositions in the FCNNs amplify the gradients (for instance, through re-
peated multiplication in deep networks), the gradients can increase exponen-
tially through the layers:∣∣∣∣∣∂σ(hl)

∂hl

∣∣∣∣∣ > 1 =⇒
∥∥∥∥∥ ∂L

∂Θ1

∥∥∥∥∥→∞, (4-6)

causing numerical instability and making the training process divergent.
The choice of activation functions within the FCNNs of MPNNs is

thus crucial for mitigating the risks associated with vanishing and exploding
gradients. Employing activation functions with well-behaved derivatives across
the relevant input domain, or incorporating normalization techniques and
gradient clipping strategies, can significantly alleviate these issues, ensuring
stable and effective learning dynamics in deep MPNN architectures.

4.3.2
Over-Smoothing

Over-smoothing (KERIVEN, 2022; CHEN et al., 2020) is a phenomenon
observed in MPNNs as a direct consequence of the iterative aggregation and
transformation process across layers. As the number of iterations k increases,
the node features h(k)

i tend to converge to a homogeneous state, making them
indistinguishable from one another. This effect is particularly pronounced
in deep networks, where the repeated application of the aggregation and
transformation functions leads to a saturation of the node feature space.
Mathematically, the over-smoothing process can be described as:

lim
k→∞

hk
i = huniform, ∀i ∈ [1, ..., N], (4-7)

where N is the number of nodes in the graph, i is the node index, and huniform

is a state where all node features converge to a uniform vector, reducing the
discriminative power of the network. This uniformity results from the excessive
blending of features, where the distinctiveness of local neighborhood structures
is lost. The primary cause of over-smoothing is the inherent design of MPNNs
to repeatedly mix the features of neighboring nodes, which, while intended to
capture the graph structure, inadvertently leads to feature homogenization.

Chapter 4. Deep Learning Background 28

4.3.3
Countering Over-Smoothing and Gradient Problems

To counter over-smoothing and gradient problems in Message Passing
Neural Networks (MPNNs), several strategies can be employed, including the
use of residual connections, the Rectified Linear Unit (ReLU) activation func-
tion, and normalization techniques such as data normalization and batch/layer
normalizations.

4.3.3.1
Residual Connections

Residual connections are instrumental in alleviating the over-smoothing
issue by allowing for the direct flow of information across layers. By adding the
input of a layer to its output, residual connections help preserve the original
feature information and the gradient magnitude, thereby maintaining feature
diversity and combating the vanishing/exploding gradient phenomenon:

hk+1
i = hk

i + f

hk
i ,

⊕
nj∈N(ni)

g(hk
i , hk

j .eij)
 , (4-8)

4.3.3.2
ReLU and Normalization

The Rectified Linear Unit (ReLU) activation function plays a critical role
in mitigating the vanishing gradient problem. By providing a linear response
for positive inputs while zeroing negative inputs, ReLU ensures that the
gradient remains sufficiently large during backpropagation, preventing it from
vanishing. The ReLU function is defined as:

ReLU(x) = max(0, x). (4-9)
Its application within the transformation functions f and g of the MPNN

not only aids in maintaining healthy gradient flow but also introduces non-
linearity without saturating, unlike sigmoid or tanh functions.

Normalization techniques, including data normalization and batch/layer
normalization, are critical in ensuring that the ReLU activation functions
operate effectively by centering the data around zero. Data normalization
adjusts the input features to have zero mean and unit variance, ensuring
that the activations are not pushed to the extremes of the ReLU function.
Similarly, batch normalization adjusts the activations of a layer for each
mini-batch, ensuring that the inputs to the ReLU function are centered and
scaled appropriately. On the other hand, layer normalization performs this
adjustment across all features in a single layer for each training example, which

Chapter 4. Deep Learning Background 29

is particularly beneficial for MPNNs that deal with variable-sized inputs due
to the differing neighborhood sizes. Both normalization techniques ensure that
the network benefits from the non-saturating properties of ReLU, facilitating
stable and efficient training:

h′ = h− µh

σh
, (4-10)

where h′ is the normalized version of the feature vector h, with µh and σh

representing the mean and standard deviation of the features, respectively, for
data normalization. The mean and variance are computed differently for batch
and layer normalization, but the goal remains to ensure that the inputs to the
activation functions facilitate effective learning.

By combining these approaches, MPNNs can effectively counteract the
challenges posed by over-smoothing and vanishing/exploding gradient prob-
lems, leading to more stable and robust graph representation learning.

4.4
MeshGraphNet

To create a data-oriented simulator using graph networks, it is first
necessary to interpret data as graphs. In the case of finite element simulations,
we define a mesh M containing m nodes connected by the edge set E. To
interpret this mesh as a graph, in (PFAFF et al., 2021), the authors encode M

into a multigraph G = (N, EM , EW), where mesh vertices become graph nodes
N and mesh edges become bidirectional graph edges EM . Another type of edge
is added to the multigraph, namely the world edges EW , that encode further
dynamic information such as collisions, self-collisions, and contact. These edges
are added by proximity; therefore, given two nodes ni and nj and a radius rW ,
if ∥ni − nj∥ < rW a world edge eW

ij ∈ EW is added.

Chapter 4. Deep Learning Background 30

DecoderEncoder

Processor

MPNN
Layer

MPNN
Layer

MPNN
Layer

MPNN
Layer

Input
Features

Output
Features

Figure 4.3: Visual representation of a MeshGraphNet. The input features
are fed to the Encoder FCNN, which transforms them into the latent features
subsequently fed to the Processor network. Then, the processor network applies
a series of message-passing steps to obtain the latent features that are fed to
the Decoder FCNN. Then, the Decoder transforms the latent features into the
output features.

The architecture is divided into three parts: Encoder, Processor, and
Decoder (Figure 4.3). The Encoder encodes features into graph nodes N and
edges EM and EW . Spatial invariance is achieved by representing positional
features as relative edge features. The encoder embeds relative displacement
vectors in mesh space ui − uj and their norms ||ui − uj|| into features for
mesh edges eM

ij ∈ EM and world edges eW
ij ∈ EW . Additionally, all remaining

dynamical features di, along with a one-hot encoding of node types, are
provided as node features in ni.

The concatenation of these features is then transformed by encoder
FCNNs into a latent vector of size 128 at each node and edge, forming the
encoded state that subsequent network layers will process. The specific FCNNs
for mesh edges, world edges, and nodes are denoted as EM , EW , and EV ,
respectively. This encoding process lays the foundation for the Processor, a
message-passing network composed of Lp message-passing layers with skip
connections to avoid vanishing gradients.

The decoder network uses an FCNN to recover the output features oi

from the latent features ni of the last processing layer. Then, oi is interpreted as
either the first or higher-order derivative of di and integrated using a forward-
Euler integrator to compute the next step in time of the dynamical features
dt+1

i .

5
Methodology

We present a novel hybrid simulation method that synergizes a differ-
entiable numerical simulator with a neural network to enhance accuracy in
simulations involving coarse FEM discretization.

5.1
Formulation

First, we introduce a general formulation for our problem based on (UM
et al., 2020), defining four manifolds:

– The reference R manifold is where lie the solutions rt, where t is the time
step number, to a given PDE obtained using a differentiable simulator
S(x, ∆t), where ∆t is the time step size and x is an input state, with a
refined mesh MR;

– The down-sampled D manifold is the solution manifold obtained by
applying a down-sampling operation TD that projects rt from MR into a
coarse mesh MU to obtain down-sampled solutions dt;

– The coarse U manifold is where lie the solutions ut to the PDE using
S(x, ∆t) with MU .

– Finally, the corrected manifold C is where lie the solutions obtained
by summing ut to a correction function approximated by a neural
network N (x|θ̂), where θ̂ is a vector that contains the estimated network
parameters, to obtain the corrected state ũt;

As a simplification, we will use SM(x, ∆t) as the simulator using a mesh
MM, where M is the manifold.

To summarize the forward computation, we have the following equations
(UM et al., 2020):

ut+1 = SU(ut, ∆t), (5-1)

ũt+1 = ut+1 +N (ut+1|θ̂), (5-2)
that can be repeated for multiple time steps, generating the state ũt+k, where
k is the number of time steps. Our goal is to make the error ϵ = ∥ũt − dt∥2 as
close as possible to zero. In other words, C should be a close approximation of
D. Therefore, we can define the following training objective:

Chapter 5. Methodology 32

arg min
θ

k∑
i=1

∥∥∥∥∥
[
ut+i +N (ut+i|θ)

]
− dt+i

∥∥∥∥∥
2︸ ︷︷ ︸

L(u,d)

. (5-3)

The backpropagation procedure integrates the network gradients and the
simulator gradients to enable full differentiability (THUEREY et al., 2021):

∂L

∂θ
=
∑

n

k∑
i=1

 ∂L

∂ũk
n

i+1∏
j=k

∂ũj
n

∂uj
n

∂uj
n

∂ũj−1
n

 ∂ũi
n

∂θ

 , (5-4)

where k is the number of time steps taken before the backward operation, and
n is the mini-batch number.

5.2
Implementation Details

To implement this framework, we use DiffPD (DU et al., 2021) as
SM(x, ∆t) and calculate the simulator gradients in Eq. (5-4) using Eqs. (3-21)
and (3-30). We use the implementation of DiffPD provided by (DU et al.,
2021) in their GitHub repository, which is CPU-based in C++ using the Eigen
library (GUENNEBAUD; JACOB et al., 2010).

As for the network N (x|θ), we use a variation of MeshGraphNet

(PFAFF et al., 2021). We implement N (x|θ) with 15 message passing layers
and all FCNNs in the encoder, processor, and decoder with four layers
and ReLU activation functions. All FCNN outputs are normalized with a
LayerNorm. This configuration was chosen because it achieved the best results
in (PFAFF et al., 2021).

Furthermore, we do not implement collisions or self-collisions, so we do
not add world edges by proximity. For the node features, we use the material
Young’s Modulus E and Poisson’s Ratio ν, as well as node velocities, external
forces, and node types encoded as one-hot vectors. For the node types, we
define two possibilities: either the node is free or fixed. Edge features are not
modified and remain the same as defined in Section 4.4. For the output feature,
we predict a position correction vector.

The network is implemented in Pytorch (PASZKE et al., 2019) and
PyTorch Geometric (FEY; LENSSEN, 2019). We train the network using batch
size n = 1 and k = 1 time steps and the Adam optimizer (KINGMA; BA,
2015). All input, output, and target features are normalized to unit variance,
and zero mean using dataset statistics. Additionally, we scale ũt and dt by
multiplying them by a constant s = 1000 before measuring the loss (Eq. (5-3))
to further mitigate the problem of vanishing gradients.

We train our model for 20 epochs on each dataset described in Chapter
6. We also implement the option of using noise in the training:

Chapter 5. Methodology 33

x̃t = xt + µτ, (5-5)

x̃t+1 = xt+1, (5-6)
where xt+1 is the target position and x̃t+1 is the target position modified by
noise, µ ∈ R is a random variable sampled from a normal distribution with
zero mean and unit variance, scaled by another parameter τ . This way, the
model’s target includes correcting the noise added to the input positions.

6
Dataset

We introduce three novel datasets to facilitate the training and evaluation
of models in coarse deformable solid dynamics simulations. Each dataset is
bifurcated into two subsets: one designated for training and the other for
evaluation. The training subsets encompass 1000 simulations each, while the
evaluation subsets contain 100 simulations. The datasets are specialized to
represent three fundamental benchmarks: (i) free deformation following an
initial impulse, (ii) stretching, and (iii) torsion of deformable solids. We chose
these three types of simulations as we observe them to be prevalent in the
literature to evaluate simulation models for deformable solid dynamics (DU et
al., 2021; LUO et al., 2020; LI; BAZANT; ZHU, 2021). For simplicity, we name
dataset (i) Impulse, (ii) Stretch, and (iii) Torsion. All datasets are generated
in less than a day by using multithreading.

Figure 6.1: CrossMeshes are composed of a central beam with either two or
four symmetric perpendicular ramifications centered at a random position on
the central beam. The refined meshes’ number of nodes varies from 7857 to
18225 nodes, while the coarse counterparts vary from 225 to 513.

Chapter 6. Dataset 35

Figure 6.2: WeightMeshes are composed of one or two perpendicular support
beams and another pendular beam with an inflation in the middle, which we
refer to as the weight. To add more variation to the data, we move the pendular
beam together with one of the support beams over the other support beam.
We also move the weight over the pendular beam and vary the sizes of all
beams. The refined meshes’ number of nodes varies from 8433 to 16857 nodes,
while the coarse counterparts vary from 237 to 471.

Figure 6.3: Visual representation of the data in the Impulse (left), Stretch
(middle), and Torsion (right) datasets. The blue arrows represent forces, while
the transparent planes are boundary conditions, and the red sphere is the node
used as reference in the analysis presented in Chapter 7.

The datasets incorporate two types of meshes, which we call
Cross Meshes (Fig. 6.1) and Weight Meshes (Fig. 6.2). We use hexahe-
dral elements, and the refined meshes MR have 64 times more elements than
the coarse meshes MU . When generating them, we create MR by subdividing
MU ’s elements. When creating the Impulse and Stretch datasets, we run
simulations for 60 frames and use 200 meshes for train and 50 for validation.
For Torsion, we run them for 120 frames, using 100 meshes for the train and
40 for validation. This difference is because the torsion phenomenon needs
more frames to be properly evaluated, and the characteristics of cross meshes

Chapter 6. Dataset 36

allow us to create fewer meshes that lead to simulations that show the desired
phenomenon well enough to be properly evaluated. On all datasets, we need
to obtain MD to measure the loss function (Eqn. (5-3)). We perform the
downsampling operation by finding the nodes in MR and MU that have the
same spacial coordinates when the meshes are undeformed, and stacking them
on the matrix Nc.

Cross Meshes are designed to be used in the Torsion dataset, as their
configurations are favorable to induce different torques on the central beam of
the meshes since the Torsion dataset is generated by subjecting the meshes
to a rotational force field (Fig. 6.3) with the following equation:

fx = α, fy = −z − ky, fz = y − kz (6-1)

f(x) = (fx(x), fy(x), fz(x)), (6-2)

f̂(x) = σ
f(x)
∥f(x)∥ , (6-3)

where k is a parameter that controls how much the field will attract to
its center, σ is a force scaling parameter, and α is a stretching parameter
introduced to avoid instability. f is the force field, f̂ is the normalized and
scaled force field, and x is a vector where the field is sampled. The field can
also be sampled using a matrix of stacked points if we also stack node positions
in a matrix and use the following equation:

F̂(X) =

f̂(x1)
f̂(x2)

...
f̂(xn)

 , X =

x1

x2
...

xn

 (6-4)

We use Algorithm 1 to generate this dataset. In this algorithm, we use
v(t)

M and p(t)
M as velocities and positions in the manifold M. At each frame,

a time step t is taken from the vector ts, which is defined as {1, 2, 3, 4, ..., n}
where n is the number of time steps in the simulation. SN (p(t)

D , v(t)
D , fn, ∆t) is

a simulator using a mesh on manifold N , MN , and receiving a set of forces fn,
a time step size ∆t, other than positions and velocities to be updated.

Chapter 6. Dataset 37

Algorithm 1: Torsion Dataset Generation Procedure
1: PU ← {}
2: PR ← {}
3: for t ∈ ts do
4: fn ← F̃(Nc)
5: p(t+1)

U , v(t+1)
U ← SU(p(t)

D , v(t)
D , fn, ∆t)

6: p(t+1)
R , v(t+1)

R ← SR(p(t)
R , v(t)

R , fn, ∆t)
7: PU ← PU ∪ {p(t+1)

U }
8: PR ← PR ∪ {p(t+1)

R }
9: p(t+1)

D , v(t+1)
D ← TDp(t+1)

R , TDv(t+1)
R

10: end for
The Weight Meshes are designed for the Impulse and Stretch datasets.

These meshes have a small inflation in the middle that can be adjusted in
height and serves to change the weight distribution of the mesh. We build this
dataset by applying forces on the borders of this part because the possibility of
it being at multiple heights creates more variation in the resulting simulations.

We use Algorithm 2 to generate the data for these datasets. The difference
between this algorithm and Algorithm 1 is that the set of forces is predefined
and time-dependent, being called fn

(t). For the Impulse dataset, this set
comprises an initial nonzero-valued force and subsequent zero-valued forces.
For the Stretch dataset, a force is generated by combining a component parallel
to the central axis of the mesh where the weight is located (Fig. 6.3), to create
the stretching of the mesh, and another component parallel to the mesh to
generate more variation to the data.

Algorithm 2: Impulse and Stretch Datasets Generation Procedure
1: PU ← {}
2: PR ← {}
3: for t ∈ ts do
4: p(t+1)

U , v(t+1)
U ← SU(p(t)

D , v(t)
D , fn

(t), ∆t)
5: p(t+1)

R , v(t+1)
R ← SR(p(t)

R , v(t)
R , fn

(t), ∆t)
6: PU ← PU ∪ {p(t+1)

U }
7: PR ← PR ∪ {p(t+1)

R }
8: p(t+1)

D , v(t+1)
D ← TDp(t+1)

R , TDv(t+1)
R

9: end for

7
Results and Discussion

In this chapter, we discuss our training and validation results, comparing
our model with the reference SR(x, ∆t) and coarse SU(x, ∆t) solvers. To
perform this analysis, we use a relative error metric:

MSE(PM , PD) = 1
n

n∑
t=1

(
pt

M − pt
D

)2
, (7-1)

EM = 100
[

MSE(PU , PD)−MSE(PM , PD)
MSE(PU , PD)

]
, (7-2)

ΩM = 1
n

∑
i

E i
M , (7-3)

where PM is a matrix containing the positions pt
M at time steps t ∈ ts,

generated by a model M . PD is a matrix containing the positions pt
D, that

are the downsampled reference positions, contained in the manifold D. The
metric ΩM ∈ (−∞, 100] is the average of E i

M applied to all n trajectories
in a dataset and can be interpreted as the percentage of discretization error
correction, where positive values of ΩM indicate a percentual decrease in the
error, while negative values indicate a percentual increase in the error. We use
these metrics to measure how much of the discretization error was corrected
and how close our model is to the reference.

We train and evaluate the models in a computer with a single NVIDIA
A100 GPU with 40GB of VRAM, two AMD EPYC 7352 24-core processors,
and 512GB of RAM. In this setting, our training times average two days for the
Impulse and Stretch datasets and three days for the Torsion dataset when
training for 20 epochs. We train the neural network with the simulator in the
training loop, showing that our training times are reasonable and our model
can be integrated into a neural network layer to be later expanded by future
work. Figure 7.1 shows the training loss graphs for our model’s training.

Chapter 7. Results and Discussion 39

Trajectories

Lo
ss

Trajectories

Lo
ss

Trajectories

Lo
ss

Figure 7.1: Trajectory-wise training losses for the Impulse, Stretch, and
Torsion datasets.

Chapter 7. Results and Discussion 40

To quantify the performance of our hybrid simulator, we compare it to
SR(x, ∆t) and SU(x, ∆t) using Eqn. (7-3) on the trajectories of the Impulse,
Stretch and Torsion validation datasets. Figures 7.2, 7.3 and 7.4 show the
trajectories of a mesh node (depicted in Figure 6.3) of curated samples from our
validation datasets predicted by the reference simulator, the coarse simulator,
and our hybrid method. Figures 7.5, 7.6 and 7.7 show frames of the same
simulations as the graphs in Figures 7.2, 7.3 and 7.4, comparing the simulations
generated by our method to SR(x, ∆t) and SU(x, ∆t).

Chapter 7. Results and Discussion 41

Figure 7.2: Comparison of node trajectories resulting from the application of
all simulators in the first trajectory of the Impulse validation dataset.

Chapter 7. Results and Discussion 42

Figure 7.3: Comparison of node trajectories resulting from the application of
all simulators in the first trajectory of the Stretch validation dataset.

Chapter 7. Results and Discussion 43

Figure 7.4: Comparison of node trajectories resulting from the application of
all simulators in the first trajectory of the Torsion validation dataset.

Chapter 7. Results and Discussion 44

Figure 7.5: Comparison of the same frame from the first trajectory of the
Impulse validation dataset, generated by our model (green), SR(x, ∆t) (blue),
and SU(x, ∆t) (red).

Figure 7.6: Comparison of the same frame from the second trajectory of the
Stretch validation dataset, generated by our model (green), SR(x, ∆t) (blue),
and SU(x, ∆t) (red).

Chapter 7. Results and Discussion 45

Figure 7.7: Comparison of the same frame from the fifth trajectory of the
Torsion validation dataset, generated by our model (green), SR(x, ∆t) (blue),
and SU(x, ∆t) (red).

Table 7.1 summarizes each solver’s accuracy and computational effi-
ciency. Our method significantly outperforms the coarse simulator in terms
of accuracy, achieving an average numerical error correction of 95.4%. Fur-
thermore, it demonstrates a computational speed up to 88 times faster than
the reference solver, highlighting the efficiency of integrating MPNNs with
FE simulation methods. The results in Table 7.1 also demonstrate that our
method is faster and more accurate than an instance of DiffPD that uses a
mesh eight times more refined than the coarse mesh used in SC(x, ∆t), which
we call Intermediate Simulator.
Method Impulse Stretch Torsion

ΩM Speedup ΩM Speedup ΩM Speedup
Reference 100.0 1x 100.0 1x 100.0 1x
Intermediate 83.1 ± 0.04 17.57x 81.4 ± 0.02 12.99x 54.5 ± 7.4 12.89x
Coarse 0.0 147.21x 0.0 162.27x 0.0 173.22x
Ours 95.9 ± 0.006 81.23x 99.1 ± 0.52 81.17x 91.3 ± 3.9 88.85x

Table 7.1: Accuracy and computational speed comparison across different
datasets. In the table Speedup = tR

tM
, where tR is the total time SR(x, ∆t)

took to perform the simulations of the validation dataset, and tM is the time
the method M took to perform the same task. Our method substantially
improves accuracy when compared to the baselines and speed when compared
to the Intermediate and Reference simulators, demonstrating its potential for
efficient and precise simulations.

The results underscore the effectiveness of our hybrid approach in ad-
dressing the limitations associated with coarse mesh discretizations in FE

Chapter 7. Results and Discussion 46

simulations. By leveraging the corrective capabilities of MPNNs, our method
reduces numerical errors and achieves substantial gains in computational ef-
ficiency. Integrating our method into a neural network layer further enhances
its versatility, allowing for seamless extensions in future work.

8
Conclusion

This work introduces a novel hybrid simulator that combines an MPNN
with a differentiable numerical simulator, notably correcting an average of
95.4% of the numerical error associated with discretization and being up to 88
times faster than the reference solver.

Moreover, providing three new datasets and making our code publicly
available encourages reproducibility and facilitates further advancements in
the field. Despite the promising outcomes, we acknowledge certain limitations,
such as the potential for overfitting. Also, the spikes in the graphs of Figure
7.1 indicate the presence of outliers in the datasets. We encourage future work
to expand our training and evaluation datasets to contain a broader range of
meshes and simulation cases to mitigate these problems.

Future work can also explore extensions of our model, such as multi-
fidelity and multi-scale methods since it is fully differentiable and can be
embedded into a neural network layer. Furthermore, as we use a generic
formulation, future work can explore the capabilities of our hybrid model to
learn other physical properties and behaviors, like thermodynamic expansion
and solid-fluid interactions, as well as other correction functions, such as
simulated-to-real and linear-to-nonlinear.

In conclusion, this study demonstrates the potential of hybrid simulation
methods in achieving high accuracy and efficiency in modeling deformable
solids. Our approach sets a new benchmark for computational simulations,
offering a viable solution to the trade-off between mesh resolution and compu-
tational demand.

9
Bibliography

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. 2015. Software available from tensorflow.org. Disponível em:
<https://www.tensorflow.org/>.

ANDERSON, J. Governing equations of fluid dynamics. In: . Computa-
tional Fluid Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
p. 15–51. ISBN 978-3-540-85056-4. Disponível em: <https://doi.org/10.1007/
978-3-540-85056-4_2>.

ARORA, R. Physrnet: Physics informed super-resolution network for application in
computational solid mechanics. In: 2022 IEEE/ACM International Workshop
on Artificial Intelligence and Machine Learning for Scientific Applications
(AI4S). [S.l.: s.n.], 2022. p. 13–18.

BAIGES, J. et al. A finite element reduced-order model based on adaptive mesh
refinement and artificial neural networks. International Journal for Numerical
Methods in Engineering, v. 121, n. 4, p. 588–601, 2020. Disponível em:
<https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6235>.

BELBUTE-PERES, F. de A. et al. End-to-end differentiable physics for
learning and control. In: BENGIO, S. et al. (Ed.). Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc., 2018.
v. 31. Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2018/
file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf>.

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, v. 5, n. 2,
p. 157–166, 1994.

BERG, J.; NYSTRöM, K. A unified deep artificial neural network approach to
partial differential equations in complex geometries. Neurocomputing, v. 317, p.
28–41, 2018. ISSN 0925-2312. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S092523121830794X>.

BLACK, N.; NAJAFI, A. R. Learning finite element convergence with the multi-
fidelity graph neural network. Computer Methods in Applied Mechanics
and Engineering, v. 397, p. 115120, 2022. ISSN 0045-7825. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S004578252200305X>.

BOUAZIZ, S. et al. Projective dynamics: Fusing constraint projections for fast
simulation. ACM Trans. Graph., Association for Computing Machinery, New
York, NY, USA, v. 33, n. 4, jul 2014. ISSN 0730-0301. Disponível em: <https:
//doi.org/10.1145/2601097.2601116>.

CAO, Y. et al. Efficient learning of mesh-based physical simulation with bi-stride
multi-scale graph neural network. In: Proceedings of the 40th International
Conference on Machine Learning. [S.l.]: JMLR.org, 2023. (ICML’23).

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-540-85056-4_2
https://doi.org/10.1007/978-3-540-85056-4_2
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6235
https://proceedings.neurips.cc/paper_files/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S092523121830794X
https://www.sciencedirect.com/science/article/pii/S092523121830794X
https://www.sciencedirect.com/science/article/pii/S004578252200305X
https://doi.org/10.1145/2601097.2601116
https://doi.org/10.1145/2601097.2601116

Chapter 9. Bibliography 49

CHEN, D. et al. Measuring and relieving the over-smoothing problem for graph
neural networks from the topological view. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, v. 34, n. 04, p. 3438–3445, Apr. 2020. Disponível
em: <https://ojs.aaai.org/index.php/AAAI/article/view/5747>.

CHEN, Q. et al. Predicting dynamic responses of continuous deformable bodies:a
graph-based learning approach. Computer Methods in Applied Mechanics
and Engineering, v. 420, p. 116669, 2024. ISSN 0045-7825. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0045782523007922>.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems, v. 2, n. 4, p. 303–314, Dec 1989.
ISSN 1435-568X. Disponível em: <https://doi.org/10.1007/BF02551274>.

DALTON, D.; GAO, H.; HUSMEIER, D. Emulation of cardiac mechanics using
graph neural networks. Computer Methods in Applied Mechanics and En-
gineering, v. 401, p. 115645, 2022. ISSN 0045-7825. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S0045782522006004>.

DALTON, D.; HUSMEIER, D.; GAO, H. Physics-informed graph neural network
emulation of soft-tissue mechanics. Computer Methods in Applied Mechanics
and Engineering, v. 417, p. 116351, 2023. ISSN 0045-7825. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0045782523004759>.

DIAO, Y. et al. Solving multi-material problems in solid mechanics using physics-
informed neural networks based on domain decomposition technology. Com-
puter Methods in Applied Mechanics and Engineering, v. 413, p. 116120,
2023. ISSN 0045-7825. Disponível em: <https://www.sciencedirect.com/science/
article/pii/S004578252300244X>.

DU, T. et al. Diffpd: Differentiable projective dynamics. ACM Trans. Graph.,
Association for Computing Machinery, New York, NY, USA, v. 41, n. 2, nov 2021.
ISSN 0730-0301. Disponível em: <https://doi.org/10.1145/3490168>.

FEY, M.; LENSSEN, J. E. Fast Graph Representation Learning with PyTorch
Geometric. 2019. Cite arxiv:1903.02428. Disponível em: <http://arxiv.org/abs/
1903.02428>.

FORTUNATO, M. et al. Multiscale meshgraphnets. In: ICML 2022 2nd AI
for Science Workshop. [s.n.], 2022. Disponível em: <https://openreview.net/
forum?id=G3TRIsmMhhf>.

GAO, H.; ZAHR, M. J.; WANG, J.-X. Physics-informed graph neural galerkin
networks: A unified framework for solving pde-governed forward and inverse prob-
lems. Computer Methods in Applied Mechanics and Engineering, v. 390,
p. 114502, 2022. ISSN 0045-7825. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S0045782521007076>.

GILMER, J. et al. Neural message passing for quantum chemistry. In: PRECUP,
D.; TEH, Y. W. (Ed.). Proceedings of the 34th International Conference
on Machine Learning. PMLR, 2017. (Proceedings of Machine Learning Re-
search, v. 70), p. 1263–1272. Disponível em: <https://proceedings.mlr.press/v70/
gilmer17a.html>.

https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://www.sciencedirect.com/science/article/pii/S0045782523007922
https://doi.org/10.1007/BF02551274
https://www.sciencedirect.com/science/article/pii/S0045782522006004
https://www.sciencedirect.com/science/article/pii/S0045782522006004
https://www.sciencedirect.com/science/article/pii/S0045782523004759
https://www.sciencedirect.com/science/article/pii/S004578252300244X
https://www.sciencedirect.com/science/article/pii/S004578252300244X
https://doi.org/10.1145/3490168
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
https://openreview.net/forum?id=G3TRIsmMhhf
https://openreview.net/forum?id=G3TRIsmMhhf
https://www.sciencedirect.com/science/article/pii/S0045782521007076
https://www.sciencedirect.com/science/article/pii/S0045782521007076
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html

Chapter 9. Bibliography 50

GONZALEZ, O.; STUART, A. M. A First Course in Continuum Mechanics.
[S.l.]: Cambridge University Press, 2008. (Cambridge Texts in Applied Mathemat-
ics).

GONZáLEZ, D.; CHINESTA, F.; CUETO, E. Learning corrections for hyperelastic
models from data. Frontiers in Materials, v. 6, 2019. ISSN 2296-8016. Disponível
em: <https://www.frontiersin.org/articles/10.3389/fmats.2019.00014>.

GUAN, Y. et al. Stable a posteriori les of 2d turbulence using convolutional neural
networks: Backscattering analysis and generalization to higher re via transfer
learning. Journal of Computational Physics, v. 458, p. 111090, 2022. ISSN
0021-9991. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0021999122001528>.

GUENNEBAUD, G.; JACOB, B. et al. Eigen v3. 2010. Http://eigen.tuxfamily.org.

HAHN, D. et al. Real2sim: Visco-elastic parameter estimation from dynamic
motion. ACM Trans. Graph., Association for Computing Machinery, New York,
NY, USA, v. 38, n. 6, nov 2019. ISSN 0730-0301. Disponível em: <https:
//doi.org/10.1145/3355089.3356548>.

HAN, S. et al. A dnn-based data-driven modeling employing coarse sample
data for real-time flexible multibody dynamics simulations. Computer Methods
in Applied Mechanics and Engineering, v. 373, p. 113480, 2021. ISSN
0045-7825. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0045782520306654>.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks
are universal approximators. Neural Networks, v. 2, n. 5, p. 359–366, 1989. ISSN
0893-6080. Disponível em: <https://www.sciencedirect.com/science/article/pii/
0893608089900208>.

HU, W.-F. et al. A shallow physics-informed neural network for solving par-
tial differential equations on static and evolving surfaces. Computer Meth-
ods in Applied Mechanics and Engineering, v. 418, p. 116486, 2024. ISSN
0045-7825. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0045782523006102>.

HU, Y. et al. Chainqueen: A real-time differentiable physical simulator for soft
robotics. In: 2019 International Conference on Robotics and Automation
(ICRA). IEEE Press, 2019. p. 6265–6271. Disponível em: <https://doi.org/10.
1109/ICRA.2019.8794333>.

HUANG, Z. et al. Plasticinelab: A soft-body manipulation benchmark with
differentiable physics. In: International Conference on Learning Repre-
sentations. [s.n.], 2021. Disponível em: <https://openreview.net/forum?id=
xCcdBRQEDW>.

ILLARRAMENDI, E. A.; BAUERHEIM, M.; CUENOT, B. Performance and accu-
racy assessments of an incompressible fluid solver coupled with a deep convolutional
neural network. Data-Centric Engineering, v. 3, p. e2, 2022.

https://www.frontiersin.org/articles/10.3389/fmats.2019.00014
https://www.sciencedirect.com/science/article/pii/S0021999122001528
https://www.sciencedirect.com/science/article/pii/S0021999122001528
https://doi.org/10.1145/3355089.3356548
https://doi.org/10.1145/3355089.3356548
https://www.sciencedirect.com/science/article/pii/S0045782520306654
https://www.sciencedirect.com/science/article/pii/S0045782520306654
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/S0045782523006102
https://www.sciencedirect.com/science/article/pii/S0045782523006102
https://doi.org/10.1109/ICRA.2019.8794333
https://doi.org/10.1109/ICRA.2019.8794333
https://openreview.net/forum?id=xCcdBRQEDW
https://openreview.net/forum?id=xCcdBRQEDW

Chapter 9. Bibliography 51

KERIVEN, N. Not too little, not too much: a theoretical analysis of graph
(over)smoothing. In: KOYEJO, S. et al. (Ed.). Advances in Neural Infor-
mation Processing Systems. Curran Associates, Inc., 2022. v. 35, p. 2268–
2281. Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2022/
file/0f956ca6f667c62e0f71511773c86a59-Paper-Conference.pdf>.

KINGMA, D.; BA, J. Adam: A method for stochastic optimization. In: Inter-
national Conference on Learning Representations (ICLR). San Diega, CA,
USA: [s.n.], 2015.

KIPF, T. N.; WELLING, M. Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations. [s.n.],
2017. Disponível em: <https://openreview.net/forum?id=SJU4ayYgl>.

KOCHKOV, D. et al. Machine learning–accelerated computational fluid dynamics.
Proceedings of the National Academy of Sciences, v. 118, n. 21, p.
e2101784118, 2021. Disponível em: <https://www.pnas.org/doi/abs/10.1073/
pnas.2101784118>.

LECUN, Y. et al. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, v. 86, n. 11, p. 2278–2324, 1998.

LI, W.; BAZANT, M. Z.; ZHU, J. A physics-guided neural network frame-
work for elastic plates: Comparison of governing equations-based and energy-
based approaches. Computer Methods in Applied Mechanics and Engi-
neering, v. 383, p. 113933, 2021. ISSN 0045-7825. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S004578252100270X>.

LIU, Q.; NICKEL, M.; KIELA, D. Hyperbolic graph neural networks. In: WALLACH,
H. et al. (Ed.). Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2019. v. 32. Disponível em: <https://proceedings.neurips.cc/
paper_files/paper/2019/file/103303dd56a731e377d01f6a37badae3-Paper.pdf>.

LIU, T.; BOUAZIZ, S.; KAVAN, L. Quasi-newton methods for real-time simulation
of hyperelastic materials. ACM Trans. Graph., Association for Computing
Machinery, New York, NY, USA, v. 36, n. 3, may 2017. ISSN 0730-0301. Disponível
em: <https://doi.org/10.1145/2990496>.

LUKOVNIKOV, D.; LEHMANN, J.; FISCHER, A. Improving the Long-Range
Performance of Gated Graph Neural Networks. 2020.

LUO, R. et al. Nnwarp: Neural network-based nonlinear deformation. IEEE Trans-
actions on Visualization and Computer Graphics, v. 26, n. 4, p. 1745–1759,
2020.

MA, P. et al. Learning neural constitutive laws from motion observations for gener-
alizable pde dynamics. In: Proceedings of the 40th International Conference
on Machine Learning. [S.l.]: JMLR.org, 2023. (ICML’23).

MA, P. et al. Diffaqua: A differentiable computational design pipeline for soft
underwater swimmers with shape interpolation. ACM Transactions on Graphics
(TOG), ACM New York, NY, USA, v. 40, n. 4, p. 132, 2021.

https://proceedings.neurips.cc/paper_files/paper/2022/file/0f956ca6f667c62e0f71511773c86a59-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0f956ca6f667c62e0f71511773c86a59-Paper-Conference.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.sciencedirect.com/science/article/pii/S004578252100270X
https://www.sciencedirect.com/science/article/pii/S004578252100270X
https://proceedings.neurips.cc/paper_files/paper/2019/file/103303dd56a731e377d01f6a37badae3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/103303dd56a731e377d01f6a37badae3-Paper.pdf
https://doi.org/10.1145/2990496

Chapter 9. Bibliography 52

MCGREIVY, N.; HAKIM, A. Invariant preservation in machine learned PDE
solvers via error correction. 2023.

MILANO, F. et al. Primal-dual mesh convolutional neural networks. In:
LAROCHELLE, H. et al. (Ed.). Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2020. v. 33, p. 952–963.
Disponível em: <https://proceedings.neurips.cc/paper_files/paper/2020/file/
0a656cc19f3f5b41530182a9e03982a4-Paper.pdf>.

NING, L. et al. A peridynamic-informed neural network for continuum elastic
displacement characterization. Computer Methods in Applied Mechanics
and Engineering, v. 407, p. 115909, 2023. ISSN 0045-7825. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0045782523000324>.

PASZKE, A. et al. Pytorch: An imperative style, high-performance deep learning
library. In: . Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems. Red Hook, NY, USA: Curran Associates
Inc., 2019.

PATHAK, J. et al. Using Machine Learning to Augment Coarse-Grid Com-
putational Fluid Dynamics Simulations. 2020.

PESTOURIE, R. et al. Physics-enhanced deep surrogates for partial differ-
ential equations. Nature Machine Intelligence, v. 5, n. 12, p. 1458–
1465, Dec 2023. ISSN 2522-5839. Disponível em: <https://doi.org/10.1038/
s42256-023-00761-y>.

PFAFF, T. et al. Learning mesh-based simulation with graph networks. In: Inter-
national Conference on Learning Representations. [s.n.], 2021. Disponível
em: <https://openreview.net/forum?id=roNqYL0_XP>.

QIAO, Y.-L. et al. Differentiable simulation of soft multi-body systems. In:
BEYGELZIMER, A. et al. (Ed.). Advances in Neural Information Process-
ing Systems. [s.n.], 2021. Disponível em: <https://openreview.net/forum?id=
j3fpZLKcXF>.

REDMON, J. et al. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). [S.l.: s.n.], 2016.

REZAEI, S. et al. A mixed formulation for physics-informed neural networks as a
potential solver for engineering problems in heterogeneous domains: Comparison
with finite element method. Computer Methods in Applied Mechanics and
Engineering, v. 401, p. 115616, 2022. ISSN 0045-7825. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S0045782522005722>.

RONNEBERGER, O.; FISCHER, P.; BROX, T. U-net: Convolutional networks
for biomedical image segmentation. In: NAVAB, N. et al. (Ed.). Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015. Cham:
Springer International Publishing, 2015. p. 234–241. ISBN 978-3-319-24574-4.

https://proceedings.neurips.cc/paper_files/paper/2020/file/0a656cc19f3f5b41530182a9e03982a4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0a656cc19f3f5b41530182a9e03982a4-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0045782523000324
https://doi.org/10.1038/s42256-023-00761-y
https://doi.org/10.1038/s42256-023-00761-y
https://openreview.net/forum?id=roNqYL0_XP
https://openreview.net/forum?id=j3fpZLKcXF
https://openreview.net/forum?id=j3fpZLKcXF
https://www.sciencedirect.com/science/article/pii/S0045782522005722
https://www.sciencedirect.com/science/article/pii/S0045782522005722

Chapter 9. Bibliography 53

SHAKIBAJAHROMI, B.; KIM, E.; BREEN, D. E. Rimeshgnn: A rotation-invariant
graph neural network for mesh classification. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). [S.l.:
s.n.], 2024. p. 3150–3160.

SHEN, S. et al. High-order differentiable autoencoder for nonlinear model reduc-
tion. ACM Trans. Graph., Association for Computing Machinery, New York, NY,
USA, v. 40, n. 4, jul 2021. ISSN 0730-0301. Disponível em: <https://doi.org/10.
1145/3450626.3459754>.

SIRIGNANO, J.; MACART, J. F.; FREUND, J. B. Dpm: A deep learning pde
augmentation method with application to large-eddy simulation. Journal of
Computational Physics, v. 423, p. 109811, 2020. ISSN 0021-9991. Disponível
em: <https://www.sciencedirect.com/science/article/pii/S0021999120305854>.

SIRIGNANO, J.; SPILIOPOULOS, K. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics, v. 375, p.
1339–1364, 2018. ISSN 0021-9991. Disponível em: <https://www.sciencedirect.
com/science/article/pii/S0021999118305527>.

STUART, A. M.; HUMPHRIES, A. R. Dynamical systems and numerical analy-
sis. In: . [s.n.], 1996. Disponível em: <https://api.semanticscholar.org/CorpusID:
117039154>.

THUEREY, N. et al. Physics-based Deep Learning. WWW, 2021. Disponível
em: <https://physicsbaseddeeplearning.org>.

TIAN, J. et al. Surrogate permeability modelling of low-permeable rocks using
convolutional neural networks. Computer Methods in Applied Mechanics
and Engineering, v. 366, p. 113103, 2020. ISSN 0045-7825. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0045782520302875>.

UM, K. et al. Solver-in-the-loop: Learning from differentiable physics to interact
with iterative pde-solvers. In: Proceedings of the 34th International Con-
ference on Neural Information Processing Systems. Red Hook, NY, USA:
Curran Associates Inc., 2020. (NIPS’20). ISBN 9781713829546.

URIARTE, C.; PARDO, D.; OMELLA Ángel J. A finite element based deep
learning solver for parametric pdes. Computer Methods in Applied Mechanics
and Engineering, v. 391, p. 114562, 2022. ISSN 0045-7825. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0045782521007374>.

WANG, N.; CHANG, H.; ZHANG, D. Surrogate and inverse modeling for two-phase
flow in porous media via theory-guided convolutional neural network. Journal of
Computational Physics, v. 466, p. 111419, 2022. ISSN 0021-9991. Disponível
em: <https://www.sciencedirect.com/science/article/pii/S0021999122004818>.

XU, J.; DURAISAMY, K. Multi-level convolutional autoencoder networks for
parametric prediction of spatio-temporal dynamics. Computer Methods in
Applied Mechanics and Engineering, v. 372, p. 113379, 2020. ISSN
0045-7825. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0045782520305648>.

https://doi.org/10.1145/3450626.3459754
https://doi.org/10.1145/3450626.3459754
https://www.sciencedirect.com/science/article/pii/S0021999120305854
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://www.sciencedirect.com/science/article/pii/S0021999118305527
https://api.semanticscholar.org/CorpusID:117039154
https://api.semanticscholar.org/CorpusID:117039154
https://physicsbaseddeeplearning.org
https://www.sciencedirect.com/science/article/pii/S0045782520302875
https://www.sciencedirect.com/science/article/pii/S0045782521007374
https://www.sciencedirect.com/science/article/pii/S0021999122004818
https://www.sciencedirect.com/science/article/pii/S0045782520305648
https://www.sciencedirect.com/science/article/pii/S0045782520305648

Chapter 9. Bibliography 54

ZHANG, Z. et al. A physics-informed convolutional neural network for the sim-
ulation and prediction of two-phase darcy flows in heterogeneous porous me-
dia. Journal of Computational Physics, v. 477, p. 111919, 2023. ISSN
0021-9991. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0021999123000141>.

ZHANG, Z.-Y.; CAI, S.-J.; ZHANG, H. A symmetry group based supervised
learning method for solving partial differential equations. Computer Methods
in Applied Mechanics and Engineering, v. 414, p. 116181, 2023. ISSN
0045-7825. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S0045782523003055>.

https://www.sciencedirect.com/science/article/pii/S0021999123000141
https://www.sciencedirect.com/science/article/pii/S0021999123000141
https://www.sciencedirect.com/science/article/pii/S0045782523003055
https://www.sciencedirect.com/science/article/pii/S0045782523003055

	Fast and Accurate Simulation of Deformable Solid Dynamics on Coarse Meshes
	Resumo
	Table of contents
	Introduction
	Related Work
	Numerical Simulation Background
	Forward Projective Dynamics
	Backward Projective Dynamics

	Deep Learning Background
	Fully Connected Neural Network
	Message Passing Neural Network
	Numerical Challenges in Message Passing Neural Networks
	MeshGraphNet

	Methodology
	Formulation
	Implementation Details

	Dataset
	Results and Discussion
	Conclusion
	Bibliography

